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Abstract

In the present paper, we extend Padmanabhan and Vrat�s model by proposing a time-proportional backlogging rate

to make the theory more applicable in practice. The existence and uniqueness of the solutions of the relevant systems

are examined. Subsequently, a numerical example is presented to illustrate the application of developed model.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the classical economic order quantity (EOQ) model, it is often assumed that the shortages are either

completely backlogged or completely lost. As a physical phenomenon, some customers may like to prefer

backlogging during the shortage period, while the others would not. In 1995, Padmanabhan and Vrat [1]

considered an EOQ model for perishable items with stock-dependent demand. Under instantaneous

replenishment with zero lead time, they presented three models: without backlogging, with complete

backlogging and partial backlogging. Recently, Chung and Dye [2] presented the necessary and sufficient
conditions of the existence and uniqueness of the optimal solutions of the profit per unit time functions

without backlogging and with complete backlogging. However, the uniqueness of the optimal solution for

the partial backlogging case remained further to unexplored.

In Padmanabhan and Vrat�s [1] model, the backlogging function was assumed to be dependent on the

amount of demand backlogged. Therefore, the more the amount of demand backlogged, the smaller the

demand to accept backlogging would be. Their definition of backlogging rate, however, seems to be

inappropriate under some circumstances. In real life, for fashionable commodities and high-tech products

with short product life cycle, the length of the waiting time for the next replenishment is the main factor for
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deciding whether the backlogging will be accepted or not. The willingness of a customer to wait for
backlogging during a shortage period is decline with the length of the waiting time. To reflect this phe-

nomenon, Chang and Dye [3] developed an inventory model in which the proportion of customers who

would like to accept backlogging is the reciprocal of a linear function of the waiting time.

Furthermore, the opportunity cost due to lost sales was not taken into account in Padmanabhan and

Vrat�s [1] analysis. During the shortages period with partial backlogging, we must distinguish between the

backorders and lost sales cases. With a lost sale, the customer�s demand for the item is lost and presumably

filled by a competitor. It can be considered as the loss of profit on the sales. Cost incurred from lost sales, is

a fixed cost per unit demanded which cannot be met from inventory. Consequently, the opportunity cost
due to lost sales should be considered in the modeling. The opportunity cost due to lost sales is generally

defined as opportunity cost¼ gross profit margin + loss of goodwill [4].

Hence, the main purpose of this note is to amend the paper of Padmanabhan and Vrat [1] with a view to

making the model more relevant and applicable in practice. In the next section, the assumptions and

notations related to this study are presented. In Section 3, we present the mathematical model and then

prove that the optimal replenishment policy not only exists but is also unique. In the last two sections, the

model is illustrated with a numerical example adopted from Padmanabhan and Vrat [1] and concluding

remarks are provided.
2. Assumptions and notations

Basically, the proposed model is developed under the same assumptions and notations adopted by

Padmanabhan and Vrat [1], except the one related to the time-proportional backlogging rate.

1. Replenishment rate is infinite and lead time is zero.
2. The distribution of time to deterioration of the items follows exponential distribution with parameter h

(i.e. constant rate of deterioration).

3. The unit cost C and the inventory carrying cost as fraction i, per unit per unit time, are known and con-

stant.

4. S, the selling price per unit and A, the ordering cost per order, are known and constant.

5. T is the cycle time and t1 is the time up to which inventory is positive in a cycle.

6. The demand rate function DðtÞ, is deterministic and is a known function of instantaneous stock level IðtÞ;
the functional DðtÞ is given by
DðtÞ ¼ aþ bIðtÞ; 06 t < t1;
a; t1 6 t < T ;

�
where a, b are positive constants.

7. Shortages are allowed and unsatisfied demand is backlogged at the rate of 1=½1þ dðT � tÞ�. The backlog-
ging parameter d is a positive constant, and t1 6 t < T . Shortage cost is C2 per unit per unit time and R is

the fixed opportunity cost of lost sales.

8. Pðt1; T Þ represents the profit function per unit time.
3. Mathematical formulation

Using above assumptions, the inventory level follows the pattern depicted in Fig. 1. The depletion of the

inventory occurs due to the combined effects of the demand and deterioration in the interval ½0; t1Þ and the



Fig. 1. Graphical representation of inventory system.
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demand backlogged in the interval ½t1; T Þ. Hence, the variation of inventory level, IðtÞ, with respect to time
can be described by the following differential equation:
dIðtÞ
dt

¼ �a� bIðtÞ � hIðtÞ; 06 t < t1;
�a=½1þ dðT � tÞ�; t1 6 t < T ;

�
ð1Þ
with boundary condition Iðt1Þ ¼ 0. The solution of (1) is
IðtÞ ¼ a½eðbþhÞðt1�tÞ � 1�=ðbþ hÞ; 06 t < t1;
�a ln½1þ dðT � t1Þ� � ln½1þ dðT � tÞ�f g=d; t1 6 t < T :

�
ð2Þ
Based on (2), the profit function consists of the following elements:

1. Ordering cost per cycle ¼ A.
2. Holding cost per cycle ¼ Ci

R t1
0
a½eðbþhÞðt1�tÞ � 1�=ðbþ hÞdt.

3. Shortage cost per cycle ¼ C2

R T
t1
afln½1þ dðT � t1Þ� � ln½1þ dðT � tÞ�g=ddt.

4. Opportunity cost due to lost sales per cycle ¼ aR
R T
t1
f1� 1=½1þ dðT � tÞ�gdt.

5. Purchase cost per cycle ¼ aC½eðbþhÞt1 � 1�=ðbþ hÞ þ aC ln½1þ dðT � t1Þ�=d.
6. Sales revenue per cycle ¼ Sf

R t1
0
aþ bIðtÞdt þ

R T
t1
a=½1þ dðT � tÞ�dtg.

Conjunct with the relevant costs mentioned above, the profit per unit time of our model leads to
P ðt1; T Þ ¼
1

T
sales revenuef � ordering cost� holding cost� shortage cost� opportunity cost

� purchase costg

¼ a½bS � ðiþ bþ hÞC�
ðbþ hÞ2T

½eðbþhÞt1 � 1� ðbþ hÞt1� þ
aðS � CÞ

dT
ln½1þ dðT � t1Þ� �

A
T

þ aðS � CÞt1
T

� aðC2 þ RdÞ
d2T

dðTf � t1Þ � ln½1þ dðT � t1Þ�g: ð3Þ
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The solutions for optimal t�1 and T � are determined from
oP ðt1; T Þ
ot1

¼ a½bS � ðiþ bþ hÞC�
ðbþ hÞT ½eðbþhÞt1 � 1� þ a½C2 þ dðRþ S � CÞ�ðT � t1Þ

½1þ dðT � t1Þ�T
¼ 0 ð4Þ
and
oP ðt1; T Þ
oT

¼ � a½bS � iþ bþ hð ÞC�
ðbþ hÞ2T 2

½eðbþhÞt1 � 1� ðbþ hÞt1� �
aðS � CÞ

dT 2
ln½1þ dðT � t1Þ� þ

aðS � CÞ
T ½1þ dðT � t1Þ�

þ A
T 2

� aðS � CÞt1
T 2

þ aðC2 þ RdÞ
d2T 2

fdðT � t1Þ � ln½1þ dðT � t1Þ�g �
aðC2 þ RdÞðT � t1Þ
T ½1þ dðT � t1Þ�

¼ 0: ð5Þ
After rearranging the terms in (4) and (5), we thus get
bS � ðiþ bþ hÞC
bþ h

½eðbþhÞt1 � 1� ¼ � ½C2 þ dðRþ S � CÞ�ðT � t1Þ
1þ dðT � t1Þ

ð6Þ
and
� a½bS � ðiþ bþ hÞC�
ðbþ hÞ2

½eðbþhÞt1 � 1� ðbþ hÞt1� �
aðS � CÞ

d
ln½1þ dðT � t1Þ� þ

aðS � CÞT
1þ dðT � t1Þ

þ A� aðS � CÞt1 þ
aðC2 þ dRÞ

d2
fdðT � t1Þ � ln½1þ dðT � t1Þ�g �

aðC2 þ dRÞT ðT � t1Þ
1þ dðT � t1Þ

¼ 0: ð7Þ
From the analysis carried out so far, we have the following propositions:

Proposition 1. If bS � ðiþ bþ hÞCP 0, then the optimal solution of maximum profit, Pðt1; T Þ, does not exist.

Proof. If bS � ðiþ bþ hÞC > 0, we can get (6) holds if and only if ðT � t1Þ < 0. It is a contradiction, be-

cause by assumption, we have t1 6 T . Similarly, if bS � ðiþ bþ hÞC ¼ 0, then, from (6), we obtain T ¼ t1.
Substituting this into (7), we get A ¼ 0, which is contradictory, because the ordering cost per cycle, A, is
positive. Therefore, if bS � ðiþ bþ hÞCP 0, the optimal solution of P ðt1; T Þ does not exist. h

A simple managerial implication of the result follows: bS � ðiþ bþ hÞC ¼ bðS � CÞ � ðiþ hÞC, where
bðS � CÞ is the benefit received from a unit of inventory and ðiþ hÞC is the cost due to a unit of inventory.

Consequently, if bðS � CÞ � ðiþ hÞCP 0, then building inventory is profitable. Thus, we should display

inventory to maximum as possible as we can, and, in this case, the profit per unit time Pðt1; T Þ will reach to

infinite. It is impossible. Therefore, when bS � ðiþ bþ hÞCP 0, we can not find a finite value of ðt1; T Þ,
such that P ðt1; T Þ is maximum and finite.

Proposition 2. If bS � ðiþ bþ hÞC < 0, then the point ðt�1; T �Þ which solves (6) and (7) simultaneously not
only exists but is also unique.

Proof. To prove the uniqueness of the solution, by using (6), we set x ¼ T � t1 and let
F ðxÞ ¼ bS � ðiþ bþ hÞC
bþ h

½eðbþhÞt1 � 1� þ ½C2 þ dðRþ S � CÞ�x
1þ dx

; xP 0: ð8Þ
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Taking the first derivative of F ðxÞ with respect to x, we have
dF ðxÞ
dx

¼ C2 þ ðRþ S � CÞd
ð1þ dxÞ2

> 0:
Hence, F ðxÞ is a strictly increasing function in x 2 ½0;1Þ.
Because, bS � ðiþ bþ hÞ < 0, thus, from (8), we get F ð0Þ < 0. Besides, it can be shown that if
t1 < t̂1 �
1

bþ h
ln 1

�
� ðbþ hÞ½C2 þ dðRþ S � CÞ�

d½bS � ðiþ bþ hÞC�

�
;

then
lim
x!1

F ðxÞ ¼ bS � ðiþ bþ hÞC
bþ h

½eðbþhÞt1 � 1� þ C2 þ dðRþ S � CÞ
d

> 0:
Therefore, there exists a unique x� 2 ð0;1Þ such that F ðx�Þ ¼ 0. From this, we can obtain the following

result: Once we get the value t1, then, from the value x� 2 ð0;1Þ, T (> t1) can be uniquely determined as a

function of t1.
Next, in order to prove the existence of the solution, by taking implicit differentiation on (6) with respect

to t1, we have
½bS � ðiþ bþ hÞC�eðbþhÞt1 ¼ �C2 þ dðRþ S � CÞ
½1þ dðT � t1Þ�2

dT
dt1

�
� 1

�
: ð9Þ
Since C2 þ dðRþ S � CÞ > 0 and bS � ðiþ bþ hÞC < 0, the previous equation holds if and only if

dT=dt1 � 1 > 0. Furthermore, from (7), we let
Gðt1Þ ¼ � a½bS � ðiþ bþ hÞC�
ðbþ hÞ2

½eðbþhÞt1 � 1� ðbþ hÞt1� �
aðS � CÞ

d
ln½1þ dðT � t1Þ�

þ aðS � CÞT
1þ dðT � t1Þ

þ A� aðS � CÞt1 þ
aðC2 þ dRÞ

d2
fdðT � t1Þ � ln½1þ dðT � t1Þ�g

� aðC2 þ dRÞT ðT � t1Þ
1þ dðT � t1Þ

: ð10Þ
Due to the relations shown in (6) and dT =dt1 � 1 > 0, we get
dGðt1Þ
dt1

¼ � a½bS � ðiþ bþ hÞC�
bþ h

½eðbþhÞt1 � 1� � a½C2 þ dðRþ S � CÞ�ðT � t1Þ
1þ dðT � t1Þ

� a½C2 þ dðRþ S � CÞ�T
½1þ dðT � t1Þ�2

dT
dt1

�
� 1

�
¼ � a½C2 þ dðRþ S � CÞT

½1þ dðT � t1Þ�2
dT
dt1

�
� 1

�
< 0:
As a result, Gðt1Þ is a strictly decreasing function of t1.
Because
lim
t1!bt1� Gðt1Þ ¼ lim

t1!bt1� � a½bS � ðiþ bþ hÞC�
ðbþ hÞ2

½eðbþhÞt1 � 1� ðbþ hÞt1�
(

� aðS � CÞ
d

ln½1þ dðT � t1Þ�

þ aðS � CÞT
1þ dðT � t1Þ

þ A� aðS � CÞt1 þ
aðC2 þ dRÞ

d2
fdðT � t1Þ � ln½1þ dðT � t1Þ�g

� aðC2 þ dRÞT ðT � t1Þ
1þ dðT � t1Þ

)
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¼ � a½bS � ðiþ bþ hÞC�
ðbþ hÞ2

½eðbþhÞ̂t1 � 1� ðbþ hÞ̂t1� þ A

þ lim
t1!bt1�

�
� a½C2 þ dðRþ S � CÞ�

d2
ln½1þ dðT � t1Þ� þ

aðS � CÞðT � t1Þ
1þ dðT � t1Þ

� adðS � CÞðT � t1Þt1
1þ dðT � t1Þ

þ aðC2 þ dRÞðT � t1Þ
d

� aðC2 þ dRÞðT � t1Þ2

1þ dðT � t1Þ

� aðC2 þ dRÞðT � t1Þt1
1þ dðT � t1Þ

�
¼ � a½bS � ðiþ bþ hÞC�

ðbþ hÞ2
½eðbþhÞ̂t1 � 1� ðbþ hÞ̂t1� þ A�1 < 0

ðsince we have lim
t1!bt1� ðT � t1Þ ¼ 1 from ð6ÞÞ:
And, from (6), T ¼ t1 ¼ 0 as t1 ¼ 0, it gets Gð0Þ ¼ A > 0. Therefore, there exists a unique t�1 2 ð0; t̂1Þ such
that Gðt�1Þ ¼ 0. This completes the proof. h

Proposition 3. If bS � ðiþ bþ hÞC < 0, then the ðt�1; T �Þ which solves Eqs. (6) and (7) simultaneously is the
global maximum of the profit per unit time.

Proof. Now, we examine the corresponding second-order sufficient conditions for the optimal solutions.

Since
o2P ðt1; T Þ
ot21

����
ðt1;T Þ¼ðt�

1
;T �Þ

¼ a½bS � ðiþ bþ hÞC�
T � eðbþhÞt�

1 � a½C2 þ dðRþ S � CÞ�
T �½1þ dðT � � t�1Þ�

2
< 0;

o2P ðt1; T Þ
oT 2

����
ðt1;T Þ¼ðt�

1
;T �Þ

¼ � a½C2 þ dðRþ S � CÞ�
T �½1þ dðT � � t�1Þ�

2
< 0;
and
o2P ðt1; T Þ
ot1oT

����
ðt1;T Þ¼ðt�

1
;T �Þ

¼ a C2 þ dðRþ S � CÞ½ �
T �½1þ dðT � � t�1Þ�

2
;

it can be easily verified that
o2P ðt1; T Þ
ot21

����
ðt1;T Þ¼ðt�

1
;T �Þ

�����
����� > o2P ðt1; T Þ

ot1oT

����
ðt1;T Þ¼ðt�

1
;T �Þ

�����
�����;

o2P ðt1; T Þ
oT 2

����
ðt1;T Þ¼ðt�

1
;T �Þ

�����
����� ¼ o2P ðt1; T Þ

ot1oT

����
ðt1;T Þ¼ðt�

1
;T �Þ

�����
�����;
and
Hj j ¼ o2Pðt1; T Þ
ot21

����
ðt1;T Þ¼ðt�

1
;T �Þ

� o2Pðt1; T Þ
oT 2

����
ðt1;T Þ¼ðt�

1
;T �Þ

� o2P ðt1; T Þ
ot1oT

����
ðt1;T Þ¼ðt�

1
;T �Þ

" #2

> 0:



782 C.-Y. Dye, L.-Y. Ouyang / European Journal of Operational Research 163 (2005) 776–783
Hence, the Hessian matrix H at point ðt�1; T �Þ is negative definite. Consequently, we can conclude that the

stationary point for our optimization problem is a global maximum. This completes the proof. h
4. Numerical example

Because t�1 and T � cannot be determined in closed forms from (6) and (7), they have to be solved

numerically using some computer algorithm. It is trivial from (6) that
Table

Effects

b

0.2

0.3

0.4
T ¼ t1 �
½bS � ðiþ bþ hÞC�½eðbþhÞt1 � 1�

½C2 þ dðRþ S � CÞ�ðbþ hÞ þ d½bS � ðiþ bþ hÞC�½eðbþhÞt1 � 1� : ð11Þ
Substituting the result into (10), we can obtain the value of t�1 from Gðt1Þ ¼ 0 by using Newton–Raphson

Method (or any bisection method). We then get T � by using (11). Therefore, we have the corresponding

maximum profit per unit time Pðt�1; T �Þ which can be obtained by (3).
For the special case, d ! 1 (i.e. complete lost sales), from (11), we get T � ¼ t�1. In this situation, the

optimal solution does not allow shortage.

To solve the nonlinear equation, Gðt1Þ ¼ 0, the subroutine ‘‘FindRoot’’ in the Mathematica version 4.0

is used to find the solution. To illustrate the proposed model, we consider the data as the example in

Padmanabhan and Vrat [1]: a ¼ 600, b ¼ f0:2; 0:3; 0:4g, A ¼ 250, h ¼ 0:05, C ¼ 5, i ¼ 0:35, C2 ¼ 3 and

S ¼ 7. Besides, R ¼ 5 and d ¼ f1; 5; 10; 25; 50g. The computed results are shown in Table 1. Also, the results

of special cases, d ¼ 0 (i.e. complete backlogging) and d ! 1 (i.e. complete lost sales) are listed in the same

table.The following inferences can be made from the results in Table 1.

1. For fixed b, increasing the value of d will result in a decrease in the optimal profit, yet the optimal service

rate (t�1=T
�) is increasing and approaches to 1.

2. For fixed b, the maximum profit occurred at d ¼ 0 (i.e. complete backlogging), and the minimum profit

occurred at d ! 1 (i.e. complete lost sales).

3. The optimal profit with partial backlogging is more sensitive to d when its value is small.

4. For fixed d, if the value of b is increasing, then the optimal profit and the optimal service rate (t�1=T
�) are

increasing simultaneously.
1

of b and d on profit

Complete

backlogging

ðd ¼ 0Þ

d Complete

lost sales

ðd ! 1Þ
1 5 10 25 50

t�1 0.5519 0.6296 0.6661 0.6733 0.6781 0.6798 0.6816

T � 0.8674 0.7521 0.7021 0.6925 0.6861 0.6839 0.6816

t�1=T
� 0.6362 0.8372 0.9487 0.9723 0.9884 0.9941 1.0000

P ðt�1 ; T �Þ 631.9 545.4 504.2 496.0 490.6 488.6 486.6

t�1 0.5877 0.6617 0.6955 0.7021 0.7065 0.7080 0.7096

T � 0.8921 0.7781 0.7295 0.7201 0.7140 0.7118 0.7096

t�1=T
� 0.6588 0.8504 0.9535 0.9750 0.9895 0.9947 1.0000

P ðt�1 ; T �Þ 651.9 574.5 538.5 531.4 526.7 525.1 523.4

t�1 0.6308 0.7006 0.7315 0.7374 0.7414 0.7428 0.7442

T � 0.9226 0.8102 0.7632 0.7542 0.7483 0.7463 0.7442

t�1=T
� 0.6837 0.8646 0.9585 0.9777 0.9907 0.9953 1.0000

P ðt�1 ; T �Þ 674.9 607.0 576.3 570.3 566.4 565.0 563.6
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5. Concluding remarks

In this paper, an inventory model is developed for deteriorating items with stock-dependent demand,

permitting shortages and time-proportional backlogging rate. In particular, the backlogging rate is con-

sidered to be a decreasing function of the waiting time for the next replenishment. This assumption is more

realistic. In practice, we can observe periodically the proportion of demand which would accept back-

logging and the corresponding waiting time for the next replenishment. Then the statistical techniques, such

as the nonlinear regression method, can be used to estimate the backlogging rate. The analytical formu-
lations of the problem on the general framework described have been given. The condition which guar-

antees the unique solution is obtained and the complete proof of corresponding second-order sufficient

conditions for optimum is also provided.

Furthermore, the results of above sensitivity analysis are consistent with the intuitive reasoning. For

fixed b, the larger the value of d is, the smaller the proportion of customers who would accept backlogging

at time t. Hence, in order to maximize the profit per unit time, the retailer should add the fraction of each

cycle in which there is no shortage. We also find that the optimal profit per unit time with partial back-

logging is more sensitive to d when its value is small. As the value of d increases, the optimal profit per unit
time becomes close to the optimal profit per unit time without shortage.
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